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The N F C  (negative factor counting) method was extended to solve the eigenvalue problem 
of  tridiagonal block matrices with elements corresponding to cross links which may be derived 
from the quantum-chemical calculation on a native protein molecule. The mathematical proof  
of the necessary theorem is given in detail. 

1 . In~oducf ion  

With the development of protein engineering, it is necessary that people obtain 
more knowledge about the relationship between the electronic structures and activ- 
ities of biological molecules [1-3]. This may contribute significantly to the under- 
standing of electron transfer involved in many biochemical reactions. The NFC 
(negative factor counting) method [4-6] is a useful tool of dealing with such aperio- 
dic biopolymers to investigate this relationship. Ladik and co- workers [7-15] cal- 
culated some model protein molecules at the ab initio level in some simple case 
including correlation by the NFC method and discussed the level distributions as 
well as the localization properties of the frontier orbitals of these model protein 
molecules. It is more difficult to calculate a native protein in such manner, because 
there are interactions through cross links in the molecule between residues, 
although they are not near to each other in the primary sequence. Li et al. [16] 
pointed out that the proof of the NFC theorem by Dean and Martin [4] is not rigor- 
ous enough but their theorem is right, and have given a more exact mathematical 
proof for it. Based on this, the author has developed the extended negative factor 
counting (ENFC) method to deal with cross link problems. The details of the math- 
ematical proof of the ENFC theorem is given in this article. Pig insulin, one of the 
smallest native proteins, is taken as the first example of the application of the 
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ENFC method in the ab initio scheme. The results are reported in a subsequent 
paper [17]. 

2. Derivat ion of  the eigenvalue equation 

Let us suppose a protein molecule consists of N amino acid residues, and each 
one of them is considered as a unit. Firstly, let us suppose that all orbitals of the 
units are known, and the nth unit has mn orbitals. Thus all the molecular orbitals of 
the protein can be written as the linear combination of these unit orbitals, 

N mn 

V = ~_~ ~ Cj(n)ckj(n). (1) 
n=l j=l 

Here fbj(n) is the unit orbital, n denotes the unit and j  a given AO in the unit. Using 
the Ritz's variational method, the following Hartree-Fock-Roothaan equation 
can be derived: 

H C  = SCE, (2) 

where H and S are the Fock matrix and the overlap matrix, respectively. For a pro- 
tein, eq. (2) is a very large generalized eigenvalue equation. Its order can reach 
more than ten thousand. At the same time, a large number of elements in the 
matrices are almost equal to zero. 

If the nearest neighbours approximation is applied, that is, only those interac- 
tions and overlaps between the units that are first neighbours (with chemical bond 
or van der Waals forces) are taken into account, the form of eq. (2) remains 
unchanged but its Fock matrix and overlap matrix will have the forms: 

H = 

'H11 H12 0 0 '~ 
H21 H22 H23 

"'..... "'..... "'-.... H,,,, 1 
.... *°-.. " '*. " ' ,  

H~nl "".... ........ " ' ""- .  HnLn'L 

0 

Hn':L ""-. " '"..  " " . . .  

HN-1,N 

0 0 HN,N-1 " HNN 

, ( 3 )  
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tSl l  S12 0 0 

S21 S22 S23 
*° 

""" ". "'"-. Sn~ 

0 iiiiiii;;; 'ili i 
S = Sn~n, ". , (4) 

• "'.. ".... "'... S~Le L 
0 

S n L n  L , I  ° " " " • • . " ° " • . 

• SN-1,N 

0 0 SN,g-1 " SNN ; 

where, H~n and Snn are the matrix blocks of the interactions and overlaps within a 
unit; H,,,+I and Sn,n+l are the matrix blocks of the interactions and overlaps 
between adjacent units in the molecule, and finally Hn,,~ and S,,6 are the matrix 
blocks of the interactions and overlaps between those units which are close in the 
three-dimensional conformation but are not adjacent in the primary sequence, 
such as the interactions and overlaps between two cysteins linked by a disulphur 
bridge. Let us assume in a macromolecule there are L such cases altogether, ni is a 
row index and n~i a column index, where i = 1 , . . . ,  L; ni < n~, and the d/s are ordered 
asn~ ~<n~<. . .  ~<n~. 

3. Numer i ca l  me thod  

3.1.THEBASICTHEOREM 

The mathematical proof of the extended negative factor counting method is 
based on the following theorem [ 16]. 

For the generalized eigenvalue equation, 

H C  = ASC, (5) 

introducing a real parameter x, constructing a matrix H - xS and partitioning it 
into a four-block form as 

AI - xR1 B2 -- xS2 
H - x S =  B ~ - - x S  + A2 X R E ] '  (6) 

the following theorem has been proven to be valid: 

THEOREM 1 

I fa  real parameter x is not an eigenvalue ofeq. (5), then the number of the eigen- 
values ofeq. (5) in the interval ( -c~,  x] is equal to the numbers of the negative eigen- 
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values of  the matrices T1 (x) and T2(x)  which meet the requirement of  the following 
recursion formula: 

T1 = A1 - xRI , (7) 

T2 = A2 - xR2 - (B + - xS~-)T~-I (B2 - xS2). (8) 

The mathematical proof  of this theorem was given in ref. [16]. 

3.2. THE EXTENDED NEGATIVE FACTOR COUNTING THEOREM 

In this subsection, the extended NFC theorem which is used to find the solution 
of the eqs. (2)-(4) will be proven in detail. 

THEOREM 2 (extended negative factor counting theorem) 

If a real parameter x is not  an eigenvalue of the eqs. (2).(4), then the number  of  
the eigenvalues of  the eqs. (2)- (4) in the interval ( -oe ,  x] (abbreviated as NE(x)), is 
equal to the sum of the numbers of  the negative eigenvalues of  following matrix 
sequence Un (x), n = 1 , . . . ,  N (abbreviated as NNE[U,  (x)]). That is 

N 
NE(x) = Z N N E [ U . ( x ) ]  ; (9) 

n=l 

U1 = S l l  - XSll ; (10) 

U .  (H,n X S n n )  + + -1  . . . .  (H._1,"  xSn_l,n)Un_ 1 (Hn-l,n - x S n - l , n ) ,  

I n = 2 , . . . , N ,  n # ni, i = I , . . . , L ;  

Un; = (H.:~ - xSn:n:)-  [Hn;_I,~+ - xS~__+ 1,~ + ( -  1)K'M(KI+1] 

x u~l_l[Hn,_l,~ - xS~-l,n'  + ( -laK'u(i)j ""K;+lJl 

K~ 
X-" ~(i)+T T-1 ~zr(i) i 1 L i 

k=l 

(11) 

(12) 

! 
Ki = n i - - n i - -  1, i =  1 , . . . , L ;  

MI i) = Hn,n'~ - xSnin'~, i = 1 , . . . ,  L ;  

M (i) + ..~:+ ~1 T -1 l~r( i ) 
(Hnl+k_2,n~+k_ 1 -- .,,.,.., ni+k_2,n~+k_ l ) ~.,nt+k_2~.,,.~k_ I i =  1 , . . . , L .  

(13) 

(14) 

(15) 

For  arbitrary i , j  = 1 , . . . ,  L, if i > j  and ni <n}, the corresponding M(i)n} - ni + 1 
• i . () 

in the matrix sequence M k is 



Y.-J. Ye / Extendednegative factor counting method 125 

"lk/l'(i) = [ -- - - +  - xS+, _, + ( -  l a ~ M  (:')+ 1U-1 M (i) "%j-n,+l tHr9-1,n ) n)-l,, 9 / Kj+IJ ~-l  ~-n, 

~--max(nt,n))-- 1 
-}- (--1)nj+nl+l Z M0')+ t r - I  M (i) (16) 

k+max(ni-n),O) "Jmax(nl,nj)+k-1 k+max(nj-nt,O) " 
k=l 

From now on the following notations will be used: 

An = Hnn - xSnn, n = l , . . . , N ;  (17) 

Bn = H n _ I , .  - x S . _ I , . ,  n = 2 , . . . , N  ; ( 1 8 )  

MI i) = H,, , ,  - xS, ,{ ,  i = 1 , . . . , L .  (19) 

The p roof  of  theorem 2 will be taken in three steps because of  the complexity 

caused by the cross-link blocks in the equation. 

P r o o f  

( i )  Step 1 

There is only one cross-link block in eqs. (2)-(4). They are noted by indices, 

nl, n~. It is equivalent to the molecular  system in fig. 1 (a). Out  of  simplicity it is sup- 

posed that  there is only one chain in the system. I f  there are more  than one chains, 

the number ing of  the units is ar ranged as 1 , . . . ,  N1, N1 + 1 , . . . ,  N, and the block 

between N1 and N1 + 1 is set to zero. The generality of  the results is not  influ- 

enced. 

In this case 

A1 B2 0 0 

B + A2 B3 
2. .. . .. M "1) 

MII)+ "'" "'""i." 
BN 

0 0 "" B }  "'AN 

F r o m  theorem 1 it is known that  the matr ix H - xS can be par t i t ioned into 

four  blocks as 

H - xS = G+ R2 ' 2 
where 
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! ! 

0 - - 0 -  . . . .  0 . . . . .  O -  . . . .  0 - - 0  
1 n I n' i N 

(a)  

l I f--1 
0 - - 0  . . . . .  0 . . . . .  0 . . . . .  O- . . . .  O- . . . .  0 - - 0  
1 n I n' I n 2 n' 2 N 

(b) 

o - - o  . . . . .  o . . . . .  _~  . . . .  o -  . . . .  ~ - _  . . . .  o - - o  

1 n I n;~ n t i  n l  2 N 

(c) 

i I ~ ]  l 
0 - - 0  . . . . .  0 . . . . .  0 . . . . .  O -  . . . .  O -  . . . .  0 - - 0  
1 n 2 n I n' N l 1312 

(d) 

Fig. 1. The molecular systems have different kinds of cross-links. 
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G2 = (B2 0 . . .  0),  

R 2 

A2 B3 

B + A3. B4 3 .  . , 

" , .  

o° 
*° 

, , .  

MII)+ "'... 

o 

.. MI 1) 

" .  0 

• . . BN 
o 13+ ". , , )  

One obtains formula (10) in theorem 2 at once as 

U1 = Hl l  - XSll 

and the matrix T2 in theorem 1 will be 

T2 = R 2  - G + U I 1 G 2  

Taking the following recursion formula: 

U n  ----- An  - B + l T - I  1:1 t n ~'n-l~'n~ n 7 £ n i ,  

the final form of matrix T2 is obtained as 

¢ U 2  B3 0 0 

B~ A3 B4 
• .. MI 1) 

" .  ° 

T2 0 " "'. 0 

Mp) + ".... .. 
. * 

• ... ". B N  

0 0 "B + "AN,) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

From theorem 1 it is known that the number of eigenvalues of eqs. (2)-(4) in the 
interval ( -oo ,  x] is equal to the sum of the numbers of the negative eigenvalues of 
the matrices U~ (x) and Ta (x), that is 

NE(x) = NNE(U1) + NNE(T2).  (28) 

Theorem 1 can be used to calculate the number of negative eigenvalues of the 
matrix T2. The eigenvalue equation which has to be solved as 
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TEC = AC (29) 
(that is, S = I in eq. (5)), and one has to take into account only the negative eigenva- 

lues. This can be done by introducing another real parameter x' and set x' = 0. In 

other words, one has to calculate the number ofeigenvalues ofeq. (29) in the inter- 
val ( -oo ,  0], so that only the matrix T2 will be partitioned as 

( U 2  G3)  (30) 
T2 ----- G +  R 3  ' 

3 

where 

G3 = (B30  . . .  0 ) ,  (31) 

R 3 -~ 

A3 84 0 

B: B5 
• • • o o, * "'-.... "-.... "... MI I) 

• • °  

Mll) + "-... ".... 

0 "B + 0 

and the matrix T 3 is obtained as 

T3 = R3 - G~-U21G3 

0 

• . B N  

"AN 

and again from theorem 1 it is known that 

NNE(T2) = NNE(U2)  + NNE(T3) .  

From recursion formula (26) it follows that 

U3 = A3 - B~U21B3 

and the final form of the matrix T3 is 

/ U3 B4 

0 T 3 ~ 

0 

B5 

Ul 1) 

MI l)+ "'..... ". .. 

Oo 

o B} 

0 

0 

• B N  

'AN 0 

The above steps can be repeated until the matrix T., is obtained, 

(32) 

(33) 

(34) 

(35) 

(36) 
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T n l  

Unl Bnl+l 0 

+ Anl+l Bin+2 Bnt+l 

O • * ° ° ' ° ° • ° ° ' * ' ° ' °  • • • • . • 
° 

* •  

MI1)+ ".. 

MI 1) 0 

" * •  ° • •  0 

° • • •  . °  

" ' . .  ". BN 

0 "B + "AN 0 

One can write 

NE(x) = NNE(U1) + NNE(U2) + . . .  + NNE(U.,_1) + NNE(T. , ) .  

When the matrix Tn I is partitioned into four blocks according to Un,, 

T., = \ G+ 

the following formulae will be obtained: 

G = ( B n , + I O  . . .  OMI 1) 0 . . .  0) ,  

(37) 

(38) 

(39) 

(40) 

and 

f Anl+l 
+ 

Bnl+2 

R =  0 

G+U~IG = 

Bn,+2 0 0 "~ 
Anl+2 lnl+3 

• • 
• , . 

• , •  • 
• . • • 

. .  • . 

• . • "  O 
• ° . • ° °  • ° 

• ° 

"'..  " ' . .  BN 
;'" "'AN 

+ -: n+ t t - lM(:)  0 Bnl+lUnl Bnl+l 0 . . . .  n l + l ~ n l  1 

0 0 

(1)+ll-lBm+l 0 . . .  ~(1)+rr-lwr(x) M 0 

0 0 

2 

0 0 

0 ~ 

0 

(41) 

.(42) 
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Introducing the following recursion formula: 

M0) n+ iI-1 M(1) k+l ~ X~nl+k~'Jnl+k-l~'~k 

and from the second formula in theorem 1, 

(43) 

Tn,+l = R - G + U ~ I G ,  (44) 

the final form of the matrix Tin+ 1 then can be obtained as follows: 

Tnl+l = 

/ Un,+l Bn,+2 0 -M~ 1) 0 ) 

+ An1+2 Bnl+3 nnl +2 

°°* '*o  . o. " * ° * * ' ° ,  o OO°o°°o, °**°°o 

°. 

- M ~  1)+ ' ' " ' "  2"" - -  ]~il')" "•. 0 
"-. t/I . .  1 " 

"""...iiii " " BN 
.o 

0 0 B + AN 

(45) 

where 

m 

I~)  = E M0)+ . , - I  ~ ( ' )  (46) ~'"k "" nl+k-l ~"*'k 
k=l 

and the following equality is valid: 

NE(x) = NNE(U, )  + NNE(U2) + . . .  + NNE(Un,) + NNE(Tn,+:).  (47) 

Comparing (45) with (37), it can be found that the differences between T,,+: 
and T,~ are that a new block of M~ :) is introduced in the matrix T,~+I, its sign is 
changed once, and the block A~ in the matrix T,~ is changed into 
A~, - MII)+u~IMI 1) in the matrix T,,+I. 

When the matrix T,~ +1 is partitioned into four blocks according to U,~ +1 and the- 
orem 1 is used again, the matrix T,~+2 will be obtained and will have a similar 
form to matrix T,,+:: 
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Tnt+2 = 

( Unl+2 Bnl+3 0 M~ 1) 0 ~ 
+ 

Bnl+3.. An,+3. Bn,+4. 
' ' . .  * ' . . .  **'-** . , • 

, . . .  " . .  
" " . .  

"** ' ' ,  . . .  

""" "... z l.; M~ 1)+ "'.. A ~ -  ""...... 0 
° * , . .  °°*° 

0 

° , . °  

"'-. BN 

0 "B~ AN 

(48) 

It is found that a new block M~ 1) occurs, its sign has been changed once again, and 
the block in the diagonal position ofn' I is changed into 

2 
~1"(1)+¥ l-1 M(1) (49) A"I" - Z . . ,  * "Lk  " '  n l +  k - l x ' x k  " 

k=l 

Substituting for K1 

l K l = n  1 - n 1 - 1  (50) 

it can be worked out that the above partitioning has to be carried out K1 times 
with the help of the recursion formula (44) to obtain T., -i- In each step a new block 
l~r(l) is introduced and its sign is opposite to that of M(k 1). The final form of the ~''k+ 1 
matrix T~_I will become 

Tff l_  1 ~- 

Vffl_ 1 B~ + (-- 1)K' i (~+ l  

"'( ')+ An~ - E(KI~ B~ + (-1)K'...K,+, 
B~+ 1 .. 

0 0 / 
Bn~+l.. / 
A,,÷l "'.... 0 ] .  

/ 
"'".  " '".  BN 

o .  

(51) 
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Partitioning the matrix T., _ I into four blocks according to Un, _ 1, one obtains 

U,, B,;+, 0 0 '~ 

B+ A,  B~+2 n',+l n,+l 

Tn', = 0 "'"-.. 0 , '''*,,. 
" . .  " . . .  B N 

0 0"" B +' 'ANj 

(52) 

where 

t_.,,x,~.O)+lrr-1 [ ,+(_I )K,M~)+I  ] U.,., = An,' - -  [13+__nl -~- k ) *'aK, + 1] '~an', - 1,  B n '  

KI 
p M(1)+T r-1 n,~O/ (53) 

- -  / a k ~ ' n l + k - l * ' l k  " 

k=l 

This is just the formula (12) in theorem 2 in this case, and formula (47) now is 
extended to 

NE(x) = NNE(U,)  + NNE(U2) + . . .  + NNE(Un{_,) + NNE(Tn,).  (54) 

Continuing the four-part partitioning as shown above, the matrices 
Un (n = n~ + 1, . . . ,  N) can be obtained after the following relationship will be 
valid: 

NNE(Tn~) = NNE(Un,) + NNE(Un;+I) + . . .  

q- N N E ( U N _ I )  q- N N E ( U N )  . (55)  

Putting this into eq. (54) the final result is obtained as 

N 
NE(x) = Z N N E [ U . ( x ) ]  (56) 

n=l 

and thus the proof of theorem 2 in this case is completed. 

(ii) Step 2 
There are two cross-link blocks in eqs. (2)-(4). Their positions are marked as 

I t nl, n~, n2, n 2. There are altogether three different distributions in this case. 

(2.a) nl <n~ <n2  <n~. This case is equivalent to the molecular system in fig. l(b). 
The proof of the theorem in this case is quite similar to step 1. The only differ- 

ence is that the different sequences of the matrices Mk should be labelled as M(k i) 
(i= l ,2 ,k= l , . . . ,K ,+  l). 
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(2. b)  nl < n2 < n~ < n~2 . This is equivalent to the molecular system in fig. 1 (c). 
In this case the four-block partitioning is the same a s  above before T/12 is 
obtained. The matrix T/12 is 

T / 1 2  - - ~  

/U/12 Q o P1 P2 o '~ 

Q+ A/12+I B/12+2 

. . . . . .  

P+ A/l, - ]2 (1) 

0 

• • . 

A~ 

0 

0 

• . .  B N  

B~v A N  

(57) 

where 

Q = B/12+1 , (58) 

~or(1) P1 = ( -1 ) /12-n~ . ,%-m+l ,  (59) 

P2 = M I  2) (60) 

and 

/12 - - / 1 1  

Eft) E M(1)+TT-1 ~(1) 
~"~'k ~"J n l+k- l  ~"~k " 

k=l 
(61) 

Partitioning T/12 again into four blocks according to Un2, one obtains 

T/12 = G + R ' (62) 

G = (Q 0 . . .  P1 0 . . .  P2 0 . . .  0),  (63) 
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R = 

An2+l 
+ 

gn2+2 

0 

0 

Bn2+2 

An2+2 Bn2+3 

0 

. ° .  

A~ - •(1) 

0 

0 

0 

• • . 

B + AN 

B N  

(64) 

and 

G +U~ l G = 

r O + U - l O  0 Q+U~IPI 0 + -I Q U,:  P2 0 . I t .  - - n 2  ~ t .  . . . . . . . .  

o 

P+U~-) Q 0 

0 

P~'U~I Q 0 

0 

o o 

P~U~-)Pl 0 . . .  Pl+U~lP2 0 . . .  

0 0 

P~U~IPI 0 . . .  P~U~'P2 0 . . .  

0 0 

(65) 

From Tn2+l = R -  G+U221G, together with the formulae above, it can be 

shown that 

Tn2+l --~ 

Un2+l Bn2+2 0 
+ An2+2 Bn~+3 8.2+2 
0 . . . . . . . . .  

( 1 ~ n ~ - - n l  + 1  ~ , A ( l ) +  
~, -- •: ~.Jtkl 0 

0 

-M~ 2)+ 0 
0 

(-1)~-")+IMO) 0 _M~ 2) 

0 0 

& +, 

y02)+ 

_~112) 

A,~ - 'r.12) 0 

. . . . . .  BN 
0 B~r AN 

(66) 

in w h i c h k l  = n2 - -  nl + 2, and 
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m 

Z(m 0 U' ~Ar(0+t t-I ~Ar(i) (67) = Z . . . . , ~ k  , . , n ,+k_ l . . , . k  , i = 1,2; 
k=l 

m 

~ 2 )  (_1).2-~, ~- '~r(l)+ .T-1 ~,~(2) (68) 
J'V~kwn2 - h i  ~" n 2 T k -  1 "tVa'k 

k=l 

and the matrix El12)is just at the position where the matrix M(,~)__.~+I will be 
obtained later. 

In the next four-block partitioning the matrix T,2+2 is obtained as follows: 

Tn2+2 ~-- 

Un2+2 Bn~+3 0 
+ An2+3 Bn2+4 B.2+3 
0 . . . . . .  

[ l'~n2-nl+2Tts(l)+ 0 
\ - -  l ] xvxk I + 1 

o 

M~ 2)+ 0 
0 

| ' ~n2-n l+21~A' ( l  ) S~ 2) 
- -  " ]  ~ U k l  + 1 0 

0 o 

An,l "]~il) _1~12) 
n2- -n l+2  

-Z~'2)+ A~ - ~i 2) 
. , .  

0 

This procedure will be continued until the matrix T,,-1 is obtained, 

0 

. . . . . .  BN 
B + AN 

(69) 

T ~ I _  1 

: l~n'~-n2-1M (2) U~-I B~ -{- (--I)K'M(KtI+ I 0 '-- ' n~-.2 0 

B + n', "{- (- I)K' M(K:++I A E (I) B Z(12) 

o iii"....:::"-.-...... "'''., . 

: 1,~n~-n2-1M(2)+ •(12)+ " ' ' ' " "  " " " A  Ei2)"" . .  (70) ~-: ,:,-,~ - ,:,-,~-I "'.... ~- :~-~-I .... 0 
..° 

0 "''° 
"'. BN • o,. f''." ".. °,.. 

o "" B~ "~,N 

Finally partitioning again this matrix into the four-block form one obtains for the 
matrix Tn,, 
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T e ' =  

-n~ (2) 
Un, ' Bn'l+ 1 0 ( -1)  Mr_n2+1 0 

B + A ,  B ,  ~1+1 nl+l  nl+2 . 0 

(-1)6-n2M~)_+2+ 1 0 " ' " " - . .  X 6 - Z~)_n2 " ' " " . .  0 (71) 
1 "°°° I °°*. 

O °°°°°° ,  °°*°,°° ° ' °°  
" ' ' " . . .  " " " . .  BN 

0 ""'" B~v AN 

and the matrix M(e. 2) ~ . 1, which is different to the others, will become 
1-- 2"l- 

M(~)n~+l = [Be' + (-1)K~M(KI?++I]U~llM~)n2 

e' --n2-- 1 
+ (--1)nl+na+l E Kff(1)+ IT-1 l~ff(2) (72) 

"~'*k+n2-nt ~" n2+k-1  ~""k " 
k=l 

By analogy, it is valid that 

NE(x) = NNE(U1) + NNE(U2) + . . .  + NNE(Ue'_I) + NNE(Te') .  (73) 

The next four-block partitionings are the same as those in step 1 and thus theo- 
rem 2 can be proved to be valid in this case also. 

It should be noted that only the representation of the M~)_~2+l is changed as com- 
pared to all the matrix sequences discussed before. 

1 

(2. c) n2 < nl < n] < n~2 . This case is corresponding to the molecular system in fig. 
l(d). 

It is found that the four-block partitions are nearly the same as those in the case 
of (2.b). The only difference is the form of the special matrix M~)_n2+l in the matrix 
sequence of M~2~: 

M(2) (_ 1 ) KI M(KI?+I ]U~I  1M(2)__n 2 e'-n2+l = [Be, + 

e' - n l  - 1  

+ ( -1)  n'+~+l y ~  ~r(1)+rr-1 l~ar(2) (74) 
~ ' " k  "-'n, + k -  1 ~""k+nl -n2 " 

k=l 
Formulae (72) and (74) can be combined in a unified form because the only dif- 

ference between the cases (2.b) and (2.c) is that the orders ofnl and n2 are different. 
The upper limit of the summation can be replaced by n~ - max(n1, n2) - 1 for 
both cases. This is valid also for the subscript of U -1 in the summation. The sub- 
script of the matrix M (1)+ is replaced by k + max(n2 - nl, 0). It is k + n2 - nl when 
n2 >nl  and k when n2 <nl .  The subscript of M (2) is replaced by k + max(nl - n2, 
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0). It is k when n2 >nl  and k + nl - n2 when n2 <hi .  The unified expression of (72) 
and (74) then becomes 

M(.~)_n2+, = [Bn' + (-1)K'M~+I]U~I-IM~), ,-.2 + (-1)n'+"2+1 

n' I -max(hi ,n2)- 1 
X ~ M (1)+ rr-1 ~(2) (75) 

k+max(n2-nl,O) v max(hi ,n2)+k- 1 **Xk+max(nl -.2,0) " 
k=l 

To summarize, the method used to prove theorem 2 in the above case is to con- 
tinue the four-block partitioning and apply theorem 1 in every step of partitioning. 
If there are any cross-links between different positions in a chain or between 
chains, a matrix sequence of M(~ ) (i = 1,2, k = 1, . . . ,  Kt) should be calculated. If 
and only if n2 < n~, the cross product between the different sequences of M(k i) occurs 
and the form of M~ ) , +1 in the matrix sequence M(k 2) is changed while the others 

• 1 - -  2 

remain the same. The same method can be used to prove the theorem m the general 
caseofi  = 1 , . . . ,L .  

(iii) Step 3 
There are L cross link blocks in eqs. (2)-(4), and their indices are 

I nl, n ~ , . . . ,  hi, h i , . . . ,  nL, n~. This is the most general case of the eqs• (2)-(4). From 
the above given proof it is known that there are altogether L matrix sequences of 
M(~ i), i = 1 , . . . ,  L, which satisfy the recursion formula (15) and are derived with the 
aid of the four block partitions. For every ni, i = 1 , . . . ,  L, take an nj from 
j = 1 , . . . ,  L. If i > j  and ni <nj, then the cross product between the sequences M (i) 

and M (]) occurs and produces the sum in the form of the matrix M(i)_nt+ 1 to change 
into 

J 

M(i)  + ( I~'M(J)+IU-1 M (i) ( 1 )  nj+n'+l 
gtt-nt+l = [I'Iffl-l,gll - x S ~ - l , f f j  q- k -  / K/+I] 4 -1  ~.-n, -'1- -- 

nj-max( ni,n/ ) -  I 
× ~ ~Ar(J)+ v r - 1  M (i) (76)  

~VXk+max(nt-n/,O) *"~ max(ni,n/)+k-1 k+max(nl-ni,O ) • 
k=l 

In all cases the forms of the matrix sequence U ,  including Un~ are unchanged. In 
every four-block partition theorem 1 is used and it is valid that 

N 
NE(x) = ~ N N E [ U n ( x ) ] .  (77) 

n=l 

The proof of theorem 2 is completed after i , j  are taken over all cross-link blocks. 
Using theorem 2, eqs. (2)-(4) can be solved by the bisection method to obtain 

the eigenvalues. The eigenvectors can be obtained by the inverse iteration [18] after 
the eigenvalues have been obtained. The approximate density of states ~(E) can 
be calculated as 
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rT(E + AE) - r/(E) 
~(E) = AE ' 

where  r/(E) is the number  ofeigenvalues of  eqs. (2)-(4) in the interval ( - e c ,  E]. 

(78) 

4. Discussion 

The application of  the E N F C  theorem has now made  it possible for us to solve 
the eigenvalue equation derived for a native protein in which cross-links exist with 
chemical bonds or van der Waals forces. The advantages of  this me thod  are that  
only non-zero matrix elements have to be treated. Pig insulin, one of  the smallest 
native proteins in which there are two chains, three disulfur bonds (cross-links with 
chemical bonds), 51 amino acid residues and 782 atoms, has been taken as the first 
example of  this method  in an ab initio scheme. In the calculation 2418 basis func- 
tions were used applying a minimal basis set. The bisect width of  the eigenvalue was 
taken as 10 -6 and 8 = {[(H - ES)C]+[ (H - ES)C]}I/2<~2 x 10 -6 was the error  
test of  the eigenvectors. The electronic DOS of  insulin conf i rmed the conclusions 
obtained previously by model  proteins. Further ,  the frontier orbitals showed that  
there are some intrinsic relationships between the electronic structures and the bio- 
logical activities of  insulin. The details of  the results are reported in the subsequent  
paper [17]. 
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